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Abstract. Let R be a commutative ring with nonzero identity, Z(R) be its

set of zero-divisors, and if a ∈ Z(R), then let annR(a) = {d ∈ R | da = 0}.
The annihilator graph of R is the (undirected) graph AG(R) with vertices

Z(R)∗ = Z(R) \ {0}, and two distinct vertices x and y are adjacent if and

only if annR(xy) 6= annR(x) ∪ annR(y). It follows that each edge (path) of
the zero-divisor graph Γ(R) is an edge (path) of AG(R). The extended zero-

divisor graph of R is the undirected (simple) graph EG(R) with the vertex

set Z(R)∗, and two distinct vertices x and y are adjacent if and only if either
Rx ∩ annR(y) 6= {0} or Ry ∩ annR(x) 6= {0}. Hence it follows that the zero-

divisor graph Γ(R) is a subgraph of EG(R). In this paper, we collect some

properties (many are recent) of the two graphs AG(R) and EG(R).

1. introduction

Let R be a commutative ring with nonzero identity, and let Z(R) be its set of
zero-divisors. Over the past several years, there has been considerable attention in
the literature to associating graphs with commutative rings (and other algebraic
structures) and studying the interplay between ring-theoretic and graph-theoretic
properties; see the recent survey articles [10] and [47]. For example, as in [16], the
zero-divisor graph of R is the (simple) graph Γ(R) with vertices Z(R) \ {0}, and
distinct vertices x and y are adjacent if and only if xy = 0. This concept is due to
Beck [29], who let all the elements of R be vertices and was mainly interested in
colorings. The zero-divisor graph of a ring R has been studied extensively by many
authors, for example see([1]-[3], [11], [20]-[21], [39]-[44], [48]-[54], [58]). We recall
from [12], the total graph ofR, denoted by T (Γ(R)) is the (undirected) graph with all
elements of R as vertices, and for distinct x, y ∈ R, the vertices x and y are adjacent
if and only if x+y ∈ Z(R). The total graph (as in [12]) has been investigated in [8],
[7], [6], [5], [47], [49], [52], [36] and [56]; and several variants of the total graph have
been studied in [4], [13], [14], [15], [19], [28], [35], [32], [33], [34], [37], [38], and [45].
Let a ∈ Z(R) and let annR(a) = {r ∈ R | ra = 0}. In 2014, Badawi [23] introduced
the annihilator graph of R. We recall from [23] that the annihilator graph of R is
the (undirected) graph AG(R) with vertices Z(R)∗ = Z(R) \ {0}, and two distinct
vertices x and y are adjacent if and only if annR(xy) 6= annR(x) ∪ annR(y). It
follows that each edge (path) of the classical zero-divisor of R is an edge (path) of
AG(R). For Further investigations of AG(R), see [24], [25], and [31]. The authors
in [26] and [27] introduced the extended zero-divisor graph of R. We recall from [26]
that the extended zero-divisor graph of R is the undirected (simple) graph EG(R)
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with the vertex set Z(R)∗, and two distinct vertices x and y are adjacent if and
only if either Rx ∩ annR(y) 6= {0} or Ry ∩ annR(x) 6= {0}. Hence it follows that
the zero-divisor graph Γ(R) is a subgraph of EG(R).

Let G be a (undirected) graph. We say that G is connected if there is a path
between any two distinct vertices. For vertices x and y of G, we define d(x, y) to
be the length of a shortest path from x to y (d(x, x) = 0 and d(x, y) =∞ if there is
no path). Then the diameter of G is diam(G) = sup{ d(x, y) | x and y are vertices
of G }. The girth of G, denoted by gr(G), is the length of a shortest cycle in G
(gr(G) =∞ if G contains no cycles).

A graph G is complete if any two distinct vertices are adjacent. The complete
graph with n vertices will be denoted by Kn (we allow n to be an infinite cardinal).
A complete bipartite graph is a graph G which may be partitioned into two disjoint
nonempty vertex sets A and B such that two distinct vertices are adjacent if and
only if they are in distinct vertex sets. If one of the vertex sets is a singleton, then
we call G a star graph. We denote the complete bipartite graph by Km,n, where
|A| = m and |B| = n (again, we allow m and n to be infinite cardinals); so a star
graph is a K1,n and K1,∞ denotes a star graph with infinitely many vertices. By G,
we mean the complement graph of G. Let G1, G2 be two graphs. The join of G1 and
G2, denoted by G1∨G2, is a graph with the vertex set V (G1∪G2) = V (G1)∪V (G2)
and edge set E(G1 ∪G2) = E(G1) ∪ E(G2) ∪ {u − v|u ∈ G1, v ∈ G2}. Finally, let

K
m,3

be the graph formed by joining G1 = Km,3 (= A ∪ B with |A| = m and
|B| = 3) to the star graph G2 = K1,m by identifying the center of G2 and a point
of B.

Throughout, R will be a commutative ring with nonzero identity, Z(R) its set of
zero-divisors, Nil(R) its set of nilpotent elements, U(R) its group of units, T (R) its
total quotient ring, and Min(R) its set of minimal prime ideals. For any A ⊆ R, let
A∗ = A \ {0}. We say that R is reduced if Nil(R) = {0} and that R is quasi-local if
R has a unique maximal ideal. A prime ideal P of R is called an associated prime
ideal, if annR(x) = P , for some non-zero element x ∈ R. The set of all associated
prime ideals of R is denoted by Ass(R), and

∑
= {annR(x)|0 6= x ∈ R}. The

distance between two distinct vertices a, b of Γ(R) is denoted by dΓ(R)(a, b). If
AG(R) is identical to Γ(R), then we write AG(R) = Γ(R); otherwise, we write
AG(R) 6= Γ(R). As usual, Z and Zn will denote the integers and integers modulo
n, respectively.

2. Basic properties of AG(R)

We recall the following basic results from [23].

Theorem 2.1. ([23, Theorem 2.2]) Let R be a commutative ring with |Z(R)∗| ≥ 2.
Then AG(R) is connected and diam(AG(R)) ≤ 2.

Theorem 2.2. ([23, Theorem 2.4]) Let R be a commutative ring. Suppose that x−y
is an edge of AG(R) that is not an edge of Γ(R) for some distinct x, y ∈ Z(R)∗. If
xy2 6= 0 and x2y 6= 0, then there is a w ∈ Z(R)∗ such that x − w − y is a path in
AG(R) that is not a path in Γ(R), and hence C : x−w− y−x is a cycle in AG(R)
of length three and each edge of C is not an edge of Γ(R).

In view of Theorem 2.2, we have the following result.

Corollary 2.3. ([23, Corollary 2.5])
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Let R be a reduced commutative ring. Suppose that x − y is an edge of AG(R)
that is not an edge of Γ(R) for some distinct x, y ∈ Z(R)∗. Then there is a w ∈
annR(xy) \ {x, y} such that x − w − y is a path in AG(R) that is not a path in
Γ(R), and hence C : x − w − y − x is a cycle in AG(R) of length three and each
edge of C is not an edge of Γ(R).

In light of Corollary 2.3, the following result follows.

Theorem 2.4. ([23, Theorem 2.6]) Let R be a reduced commutative ring and sup-
pose that AG(R) 6= Γ(R). Then gr(AG(R)) = 3. Furthermore, there is a cycle C
of length three in AG(R) such that each edge of C is not an edge of Γ(R).

In view of Theorem 2.2, the following is an example of a non-reduced commuta-
tive ring R where x− y is an edge of AG(R) that is not an edge of Γ(R) for some
distinct x, y ∈ Z(R)∗, but every path in AG(R) of length two from x to y is also a
path in Γ(R).

Example 2.5. Let R = Z8. Then 2 − 6 is an edge of AG(R) that is not an edge
of Γ(R). Now 2 − 4 − 6 is the only path in AG(R) of length two from 2 to 6 and
it is also a path in Γ(R). Note that AG(R) = K3, Γ(R) = K1,2, gr(Γ(R)) = ∞,
gr(AG(R)) = 3, diam(Γ(R)) = 2, and diam(AG(R)) = 1.

The following is an example of a non-reduced commutative ring R such that
AG(R) 6= Γ(R) and if x − y is an edge of AG(R) that is not an edge of Γ(R) for
some distinct x, y ∈ Z(R)∗, then there is no path in AG(R) of length two from x
to y.

Example 2.6. (1) Let R = Z2×Z4 and let a = (0, 1), b = (1, 2), and c = (0, 3).
Then a − b and c − b are the only two edges of AG(R) that are not edges
of Γ(R), but there is no path in AG(R) of length two from a to b and there
is no path in AG(R) of length two from c to b. Note that AG(R) = K2,3,

Γ(R) = K
1,3

, gr(AG(R)) = 4, gr(Γ(R)) = ∞, diam(AG(R) = 2, and
diam(Γ(R)) = 3.

(2) Let R = Z2×Z2[X]/(X2). Let x = X+(X2) ∈ Z2[X]/(X2), a = (0, 1), b =
(1, x), and c = (0, 1 + x). Then a − b and c − b are the only two edges
of AG(R) that are not edges of Γ(R), but there is no path in AG(R) of
length two from a to b and there is no path in AG(R) of length two from

c to b. Again, note that AG(R) = K2,3, Γ(R) = K
1,3

, gr(AG(R)) = 4,
gr(Γ(R)) =∞, diam(AG(R) = 2, and diam(Γ(R)) = 3.

If AG(R) 6= Γ(R) and gr(AG(R)) = 4, then the following result characterize, up
to isomorphism, all such rings.

Theorem 2.7. ([23, Theorem 2.9]) Let R be a commutative ring and suppose that
AG(R) 6= Γ(R). Then the following statements are equivalent:

(1) gr(AG(R)) = 4;
(2) gr(AG(R)) 6= 3;
(3) If x− y is an edge of AG(R) that is not an edge of Γ(R) for some distinct

x, y ∈ Z(R)∗, then there is no path in AG(R) of length two from x to y;
(4) There are some distinct x, y ∈ Z(R)∗ such that x− y is an edge of AG(R)

that is not an edge of Γ(R) and there is no path in AG(R) of length two
from x to y;
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(5) R is ring-isomorphic to either Z2 × Z4 or Z2 × Z2[X]/(X2).

In view of Theorem 2.7, the following result follows

Corollary 2.8. ([23, Corollary 2.10]) Let R be a commutative ring such that
AG(R) 6= Γ(R) and assume that R is not ring-isomorphic to Z2×B, where B = Z4

or B = Z2[X]/(X2). If E is an edge of AG(R) that is not an edge of Γ(R), then
E is an edge of a cycle of length three in AG(R).

A direct implication of Theorem 2.7 and Corollary 2.8 is the following result.

Corollary 2.9. ([23, Corollary 2.11]) Let R be a commutative ring such that
AG(R) 6= Γ(R). Then gr(AG(R)) ∈ {3, 4}.

Theorem 2.10. ([24, Theorem 2.5]) Let R be a non-reduced ring such that R is

not ring-isomorphic to Z2 × B, where B = Z4 or B = Z2[X]
(X2) . Then the following

statements are equivalent:

(1) gr(AG(R)) =∞;
(2) AG(R) is a star graph;
(3) AG(R) is a bipartite graph;
(4) AG(R) is a complete bipartite graph;
(5)

∑∗
= Ass(R) = {annR(x), annR(y)} for some x, y ∈ Z(R)∗. Furthermore,

if annR(x) = annR(y), then |annR(x)| = |Z(R)| = 3 and if annR(x) 6=
annR(y), then

∑∗
= {Z(R), annR(Z(R))} and |annR(Z(R))∗| = 1.

Theorem 2.11. ([24, Corollary 2.3]) Let R be a ring. Then AG(R) is a complete
bipartite graph if and only if one of the following statements holds:

(1) Nil(R) = {0} and |Min(R)| = 2;
(2) Nil(R) 6= {0} and either AG(R) = K1,n or AG(R) = K2,3, where 1 ≤ n ≤
∞.

Let x be a vertex of AG(R). In the following result, the authors in[24] gave
conditions under which x is adjacent to every vertex in Γ(R).

Theorem 2.12. ([24, Theorem 2.6]) Let R be a ring and x be a vertex of AG(R).
Then the following statements are equivalent:

(1) x is adjacent to every other vertex of Γ(R);
(2) annR(x) is a maximal element of

∑
and x is adjacent to every other vertex

of AG(R).

Recall that a undirected simple graph G = (V,E) is called an n-partite graph if
V = A1 ∪ A2 ∪ · · · ∪ An for some n ≥ 2, where each Ai 6= φ, Ai ∩ Aj = φ, i 6= j,
1 ≤ i, j ≤ n, and x, y ∈ Ai implies x− y is not an edge of G.

The authors in [25] prove the following result.

Theorem 2.13. ([25, Theorem 2.1]) Let R = D1 × · · · ×Dn, where n ≥ 2 and Di

is an integral domain for every 1 ≤ i ≤ n. Then the following statements hold:

(1) AG(R) is an nCdn2 e-partite graph (Recall that mCn (m choose n) = m!
n!(m−n)! .)

(2) AG(R) is not an nCdn2 e − 1-partite graph.

3. When does AG(R) = Γ(R)?

It is natural to ask when does AG(R) = Γ(R)? For a reduced ring R that is not
an integral domain, we have the following results.
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3.1. Case I: R is reduced.

Theorem 3.1. ([23, Theorem 3.3]) Let R be a reduced commutative ring that is
not an integral domain. Then the following statements are equivalent:

(1) AG(R) is complete;
(2) Γ(R) is complete (and hence AG(R) = Γ(R));
(3) R is ring-isomorphic to Z2 × Z2.

Theorem 3.2. ([23, Theorem 3.4]) Let R be a reduced commutative ring that is not
an integral domain and assume that Z(R) is an ideal of R. Then AG(R) 6= Γ(R)
and gr(AG(R)) = 3.

Theorem 3.3. ([23, Theorem 3.5]) Let R be a reduced commutative ring with
|Min(R)| ≥ 3 (possibly Min(R) is infinite). Then AG(R) 6= Γ(R) and gr(AG(R)) =
3.

Theorem 3.4. ([23, Theorem 3.6]) Let R be a reduced commutative ring that is
not an integral domain. Then AG(R) = Γ(R) if and only if |Min(R)| = 2.

Theorem 3.5. ([23, Theorem 3.7]) Let R be a reduced commutative ring. Then
the following statements are equivalent:

(1) gr(AG(R)) = 4;
(2) AG(R) = Γ(R) and gr(Γ(R)) = 4;
(3) gr(Γ(R)) = 4;
(4) T (R) is ring-isomorphic to K1 ×K2, where each Ki is a field with |Ki| ≥ 3;
(5) |Min(R)| = 2 and each minimal prime ideal of R has at least three distinct

elements;
(6) Γ(R) = Km,n with m,n ≥ 2;
(7) AG(R) = Km,n with m,n ≥ 2.

Theorem 3.6. ([23, Theorem 3.8]) Let R be a reduced commutative ring that is
not an integral domain. Then the following statements are equivalent:

(1) gr(AG(R)) =∞;
(2) AG(R) = Γ(R) and gr(AG(R)) =∞;
(3) gr(Γ(R)) =∞;
(4) T (R) is ring-isomorphic to Z2 ×K, where K is a field;
(5) |Min(R)| = 2 and at least one minimal prime ideal ideal of R has exactly

two distinct elements;
(6) Γ(R) = K1,n for some n ≥ 1;
(7) AG(R) = K1,n for some n ≥ 1.

In view of Theorem 3.5 and Theorem 3.6, we have the following result.

Corollary 3.7. ([23, Corollary 3.9]) Let R be a reduced commutative ring. Then
AG(R) = Γ(R) if and only if gr(AG(R)) = gr(Γ(R)) ∈ {4,∞}.

If R is non-reduced, then we have the following results.

3.2. Case II: R is non-reduced.

Theorem 3.8. ([24, Theorem 2.2]) Let R be a ring such that for each edge of
AG(R), say x−y, either annR(x) ∈ Ass(R) or annR(y) ∈ Ass(R). Then AG(R) =
Γ(R). In particular, if

∑∗
= Ass(R), then Γ(R) = AG(R).
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Theorem 3.9. ([24, Theorem 2.3]) Let R be a non-reduced ring. Then the following
statements are equivalent:

(1) Γ(R) = AG(R) = Kn∨Km, where n = |Nil(R)∗| and m = |Z(R)\Nil(R)|.
(2) annR(Z(R)) is a prime ideal of R.
(3)

∑∗
= Ass(R) and |

∑∗ | ≤ 2.

Theorem 3.10. ([23, Theorem 3.15]) Let R be a non-reduced commutative ring
such that Z(R) is not an ideal of R. Then AG(R) 6= Γ(R).

Theorem 3.11. ([23, Theorem 3.16]) Let R be a non-reduced commutative ring.
Then the following statements are equivalent:

(1) gr(AG(R)) = 4;
(2) AG(R) 6= Γ(R) and gr(AG(R)) = 4;
(3) R is ring-isomorphic to either Z2 × Z4 or Z2 × Z2[X]/(X2);

(4) Γ(R) = K
1,3

;
(5) AG(R) = K2,3.

We observe that gr(Γ(Z8)) = ∞, but gr(AG(Z8)) = 3. We have the following
result.

Theorem 3.12. ([23, Theorem 3.17]) Let R be a commutative ring such that
AG(R) 6= Γ(R). Then the following statements are equivalent:

(1) Γ(R) is a star graph;
(2) Γ(R) = K1,2;
(3) AG(R) = K3.

Theorem 3.13. ([23, Theorem 3.18]) Let R be a non-reduced commutative ring
with |Z(R)∗| ≥ 2. Then the following statements are equivalent:

(1) AG(R) is a star graph;
(2) gr(AG(R)) =∞;
(3) AG(R) = Γ(R) and gr(Γ(R)) =∞;
(4) Nil(R) is a prime ideal of R and either Z(R) = Nil(R) = {0,−w,w}

(w 6= −w) for some nonzero w ∈ R or Z(R) 6= Nil(R) and Nil(R) = {0, w} for
some nonzero w ∈ R (and hence wZ(R) = {0});

(5) Either AG(R) = K1,1 or AG(R) = K1,∞;
(6) Either Γ(R) = K1,1 or Γ(R) = K1,∞.

Corollary 3.14. ([23, Corollary 3.19]) Let R be a non-reduced commutative ring
with |Z(R)∗| ≥ 2. Then Γ(R) is a star graph if and only if Γ(R) = K1,1, Γ(R) =
K1,2, or Γ(R) = K1,∞.

Remark 3.15. In view of Theorem 2.10, the authors in [24] gave an alternative
proof of Theorem 3.13 (see [24, Corollary 2.4]).

In the following example, we construct two non-reduced commutative rings say
R1 and R2, where AG(R1) = K1,1 and AG(R2) = K1,∞.

Example 3.16. (1) Let R1 = Z3[X]/(X2) and let x = X + (X2) ∈ R1. Then
Z(R1) = Nil(R1) = {0,−x, x} and AG(R1) = Γ(R1) = K1,1. Also note
that AG(Z9) = Γ(Z9) = K1,1.

(2) Let R2 = Z2[X,Y ]/(XY,X2). Then let x = X + (XY + X2) and y =
Y + (XY + X2) ∈ R2. Then Z(R2) = (x, y)R2, Nil(R2) = {0, x}, and
Z(R2) 6= Nil(R2). It is clear that AG(R2) = Γ(R2) = K1,∞.
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Remark 3.17. Let R be a non-reduced commutative ring. In view of Theorem
3.10, Theorem 3.11, and Theorem 3.13, if AG(R) = Γ(R), then Z(R) is an ideal
of R and gr(AG(R)) = gr(Γ(R)) ∈ {3,∞}. The converse is true if gr(AG(R) =
gr(Γ(R)) = ∞ (see Theorem 3.10 and 3.13). However, if Z(R) is an ideal of R
and gr(AG(R)) = gr(Γ(R)) = 3, then it is possible to have all the following cases:

(1) It is possible to have a commutative ring R such that Z(R) is an ideal of R,
Z(R) 6= Nil(R), AG(R) = Γ(R), and gr(AG(R)) = 3. See Example 3.18.

(2) It is possible to have a commutative ring R such that Z(R) is an ideal of
R, Z(R) 6= Nil(R), Nil(R)2 = {0}, AG(R) 6= Γ(R), diam(AG(R)) =
diam(Γ(R)) = 2, and gr(AG(R)) = gr(Γ(R)) = 3. See Example 3.19.

(3) It is possible to have a commutative ring R such that Z(R) is an ideal
of R, Z(R) 6= Nil(R), Nil(R)2 = {0}, AG(R) is a complete graph (i.e.,
diam(AG(R)) = 1), AG(R) 6= Γ(R), diam(Γ(R)) = 2, and gr(AG(R)) =
gr(Γ(R)) = 3. See Theorem 3.20.

Example 3.18. Let D = Z2[X,Y,W ], I = (X2, Y 2, XY,XW )D is an ideal of D,
and let R = D/I. Then let x = X+ I, y = Y + I, and w = W + I be elements of R.
Then Nil(R) = (x, y)R and Z(R) = (x, y, w)R is an ideal of R. By construction,
we have Nil(R)2 = {0}, AG(R) = Γ(R), diam(AG(R)) = diam(Γ(R)) = 2, and
gr(AG(R)) = gr(Γ(R)) = 3 (for example, x − (x + y) − y − x is a cycle of length
three).

Example 3.19. Let D = Z2[X,Y,W ], I = (X2, Y 2, XY,XW, YW 3)D is an ideal
of D, and let R = D/I. Then let x = X + I, y = Y + I, and w = W + I be
elements of R. Then Nil(R) = (x, y)R and Z(R) = (x, y, w)R is an ideal of R.
By construction, Nil(R)2 = {0}, diam(AG(R)) = diam(Γ(R)) = 2, gr(AG(R)) =
gr(Γ(R)) = 3. However, since w3 6= 0 and y ∈ annR(w3) \ (annR(w)∪ annR(w2)),
we have w − w2 is an edge of AG(R) that is not an edge of Γ(R), and hence
AG(R) 6= Γ(R).

Given a commutative ring R and an R-module M , the idealization of M is the
ring R(+)M = R×M with addition defined by (r,m) + (s, n) = (r+ s,m+n) and
multiplication defined by (r,m)(s, n) = (rs, rn+sm) for all r, s ∈ R and m,n ∈M .
Note that {0}(+)M ⊆ Nil(R(+)M) since ({0}(+)M)2 = {(0, 0)}. We have the
following result

Theorem 3.20. ([23, Theorem 3.24]) Let D be a principal ideal domain that is
not a field with quotient field K (for example, let D = Z or D = F [X] for some
field F ) and let Q = (p) be a nonzero prime ideal of D for some prime (irreducible)
element p ∈ D. Set M = K/DQ and R = D(+)M . Then Z(R) 6= Nil(R), AG(R)
is a complete graph, AG(R) 6= Γ(R), and gr(AG(R)) = gr(Γ(R)) = 3.

The following example shows that the hypothesis “Q is principal” in the above
Theorem is crucial.

Example 3.21. Let D = Z[X] with quotient field K and Q = (2, X)D. Then
Q is a nonprincipal prime ideal of D. Set M = K/DQ and R = D(+)M . Then
Z(R) = Q(+)M , Nil(R) = {0}(+)M , and Nil(R)2 = {(0, 0)}. Let a = (2, 0) and
b = (0, 1

X +DQ). Then ab = (0, 2
X +DQ) ∈ Nil(R)∗. Since annR(ab) = annR(b),

we have a− b is not an edge of AG(R). Thus AG(R) is not a complete graph.

We terminate this section with the following open question.



8 AYMAN BADAWI

(Open question, [24]): Let R be a non-reduced ring and x − y be an edge of
AG(R). If Γ(R) = AG(R), then is it true either annR(x) ∈ Ass(R) or annR(y) ∈
Ass(R)?

4. Clique number and chromatic number of AG(R)

Let G = (V,E) be a graph. The clique number of G, denoted by w(G), is the
largest positive integer n such that Kn is a subgraph of G. The chromatic number
of G, denoted by χ(G), is the the minimal number of colors which can be assigned
to the vertices of G in such a way that every two adjacent vertices have different
colors. It should be clear that w(G) ≤ χ(G). Again, recall that mCn (m choose n)
= m!

n!(m−n)! .

Theorem 4.1. ([25, Theorem 2.2]) Assume that R is ring-isomorphic to D1 ×
· · · × Dn, where n ≥ 2 and Di is an integral domain for every 1 ≤ i ≤ n. Then
w(AG(R)) = χ(AG(R)) = nCdn2 e. In particular, if R is an Artinian ring, then

w(AG(R)) = χ(AG(R)) = |Max(R)|Cd |Max(R)|
2 e.

Theorem 4.2. ([25, Theorem 2.3]) Let R be a non-reduced ring. Then the following
statements hold.

(1) If |Z(R)| <∞, then the following statements are equivalent:
(a) w(AG(R)) = |Nil(R)|.
(b) χ(AG(R)) = |Nil(R)|.
(c) AG(R) = K2,3.

(2) If |Z(R)| = ∞, w(AG(R)) < ∞ and Z(R) is an ideal of R, then the
following statements are equivalent:
(a) W (AG(R)) = |Nil(R).
(b) χ(AG(R)) = |Nil(R)|.
(c) AG(R) = K|Nil(R)∗| ∨K∞.
(d) x− y is not an edge of AG(R), for every x, y ∈ Z(R) \Nil(R).

It is well-known that if G is a bipartite graph, then χ(AG(R)) = 2. In the
following result, the authors in [25] classified all bipartite annihilator graphs of
rings.

Theorem 4.3. ([25, Theorem 2.4]) Let R be a non-reduced ring. Then the following
statements are equivalent:

(1) w(AG(R)) = 2;
(2) χ(AG(R)) = 2;
(3) AG(R) = K2,3 or AG(R) = K2 or AG(R) = K1 ∨K∞.

5. Genus of AG(R)

The genus of a graph G, denoted by g(G), is the minimal integer n such that the
graph can be embedded in Sn. Intuitively, G is embedded in a surface if it can be
drawn in the surface so that its edges intersect only at their common vertices. A
graph G with genus 0 is called a planar graph and a graph G with genus 1 is called
as a toroidal graph. Note that if H is a subgraph of a graph G, then g(H) ≤ g(G).
In the following result, the authors in [31] classified all quasi-local rings (up to
isomorphism) that have planar annihilator graphs.



RECENT RESULTS ON THE ANNIHILATOR GRAPH OF A COMMUTATIVE RING: A SURVEY9

Theorem 5.1. ([31, Theorem 15]) Let R be a quasi-local ring. Then AG(R)
is a planar if and only if R is ring-isomorphic to one of the following rings:

Z4,
Z2[X]
(X2) , Z9,

Z3[X]
(X3) , Z8,

Z2[X]
(X3) ,

Z4[X]
(X3,X2−2) ,

Z2[X,Y ]
(X2,XY,Y 2) ,

Z4[X]
(2X,X2) ,

F4[X]
(X2) (where F4 denotes

a field with 4 elements), Z4[X]
(X2+X+1) , Z25, or Z5[X]

(X2) .

For a reduced finite ring, we have the following result.

Theorem 5.2. ([31, Theorem 16]) Let R be a reduced finite ring that is not a
field, i.e., R = F1 × · · · × Fn, where each Fi is a finite field and n ≥ 2. Then
AG(R) is planar if and only if R is ring-isomorphic to one of the following rings:
Z2 × F,Z3 × F,Z2 × Z2 × Z2, Z2 × Z2 × Z3, where F is a finite field.

If R is a non-reduced finite ring, then we have the following.

Theorem 5.3. ([31, Theorem 17]) Assume that R is ring-isomorphic to R1×· · ·×
Rn × F1 × · · · × Fm, where each Ri is a finite quasi-local ring that is not a field,
each Fi is a finite field, and n,m ≥ 1. Then AG(R) is planar if and only if R is

ring-isomorphic to one of the following rings: Z4 × Z2, Z2[X]
(X2) × Z2.

The following result classifies (up to isomorphism) all quasi-local rings that have
genus one annihilator graphs.

Theorem 5.4. ([31, Theorem 18]) Let R be a quasi-local ring. Then g(AG(R)) = 1
if and only if R is ring-isomorphic to one of the following rings:

Z16,
Z2[X]
(X4) ,

Z4[X]
(X4,X2−2) , Z2[X]

(X3−2,X4) , Z4[X]
(X3+X2−2,X4) , Z2[X]

(X3,X2−2X) ,
Z2[X,Y ]

(X3,XY,Y 2−X2) , Z8[X]
(X2−4,2x) ,

Z4[X,Y ]
(X3,XY,X2−2,Y 2−2,Y 3) ,Z4[X]

(X2) , Z4[X,y]
(X2,Y 2,XY−2)) , Z2[X,Y ]

(X2,Y 2) ,
Z2[X,Y ]

(X2,Y 2,XY ) ,
Z4[X]

(X3,2x) , Z4[X,Y ]
(X3,X2−2,XY,Y 2) ,

Z8[X]
(X2) ,

F8[X]
(X2) ,

Z4[X]
(X3+X+1) ,

Z4[X,Y ]
(2X,2Y,X2,Y 2,XY ) ,

Z2[X,Y,Z]
(X,Y,Z)2 , Z49, or Z7[X]

(X2)

The following result classifies (up to isomorphism) all finite reduced rings that
have genus one annihilator graphs.

Theorem 5.5. ([31, Theorem 19]) Let R be a reduced finite ring that is not a field,
i.e.,R is ring-isomorphic to F1×· · ·×Fn, where each Fi is a finite field and n ≥ 2.
Then g(AG(R)) = 1 if and only if R is ring-isomorphic to one of the following
rings: F4 × F4, F4 × Z5, Z5 × Z5, or F4 × Z7.

If R is a non-reduced finite ring, then we have the following.

Theorem 5.6. ([31, Theorem 20])Assume that R is ring-isomorphic to R1× · · · ×
Rn × F1 × · · · × Fm, where each Ri is a finite quasi-local ring that is not a field,
each Fi is a finite field, and n,m ≥ 1. Then g(AG(R)) = 1 if and only if R is

ring-isomorphic to one of the following rings: Z4 × Z3, or Z2[X]
(X2) × Z3.

6. Extended zero-divisor graph of R: EG(R)

Recall ([26]) that the extended zero-divisor graph of R is the undirected (simple)
graph EG(R) with the vertex set Z(R)∗, and two distinct vertices x and y are
adjacent if and only if either Rx ∩ annR(y) 6= {0} or Ry ∩ annR(x) 6= {0}. Hence
it follows that the zero-divisor graph Γ(R) is a subgraph of EG(R).

In the following result, we collect some basic properties of EG(R).

Theorem 6.1. ([26]) Let R be a ring. Then
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(1) ([26, Theorem 2.1]) EG(R) is connected and diam(EG(R)) ≤ 2. Moreover,
if E(G) has a cycle, then gr(EG(R)) ≤ 4.

(2) ([26, Theorem 2.2]) If EG(R) has a cycle, then gr(E(G)) = 4 if and only
if R is reduced with |Min(R)| = 2.

(3) ([26, Theorem 3.2]) EG(R) is a star graph if and only if one of the following
statements holds:
(a) R is ring-isomorphic to Z2 ×D, where D is an integral domain.
(b) |Z(R)| = 3.
(c) Nil(R) is a prime ideal of R and |Nil(R)| = 2.

(4) ([26, Theorem 3.3]) Suppose that R is a non-reduced ring such that EG(R)
is a star graph. Then the following statements hold:
(a) R is indecomposable.
(b) Either |Z(R)| = 3 or |Z(R)| =∞.

(5) Assume that R is ring-isomorphic to D1 × · · · ×Dn, where n ≥ 2 and each
Di is an integral domain. Then EG(R) is a complete (2n−2)-partite graph.

Let R be a ring and x, y ∈ R. The authors in [26] called an element x an
Ry-regular element if x 6∈ Z(Ry) and RxRy 6= Ry.

Theorem 6.2. ([26, Theorem 3.5]) Let R be a non-reduced ring. Then EG(R) is
complete if and only if R is indecomposable and either x is not Ry-regular or y is
not Rx-regular, for every distinct x, y ∈ Z(R)∗.

7. When does EG(R) = Γ(R)?

Since Γ(R) is always an induced subgraph of EG(R), it is natural to ask when
does EG(R) = Γ(R)? First, we consider the case when R is reduced.

7.1. Case I: R is reduced.

Theorem 7.1. ([26]) Let R be a reduced ring that is not an integral domain.

(1) ([26, Theorem 4.1, Corollary 4.3]) Assume |Min(R)| = n. The following
statements are equivalent:
(a) n = 2;
(b) Γ(R) = EG(R);
(c) gr(EG(R)) = gr(Γ(R)) ∈ {4,∞}.

(2) ([26, Corollary 4.1]) The following statements are equivalent:
(a) gr(EG) =∞;
(b) EG(R) = Γ(R) and gr(EG(R)) =∞;
(c) gr(Γ(R)) =∞;
(d) |Min(R)| = 2 and at least one minimal prime ideal of R has exactly

two distinct elements;
(e) Γ(R) = K1,n for some n ≥ 1.
(f) EG(R) = K1,n for some n ≥ 1.

(3) ([26, Corollary 4.2]) The following statements are equivalent:
(a) gr(EG(R)) = 4;
(b) EG(R) = Γ(R) and gr(Γ(R)) = 4;
(c) gr(EG(R)) = 4;
(d) |Min(R)| = 2 and each minimal prime ideal of R has at least three

distinct elements;
(e) EG(R) = Km,n for some m,n ≥ 2;
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(f) Γ(R) = Km,n for some m,n ≥ 2.

Now we consider the case when R is non-reduced.

7.2. Case II: R is non-reduced.

Theorem 7.2. ([26, Theorem 4.3]) Let R be a non-reduced ring. Then the following
statements are equivalent:

(1) gr(EG(R)) =∞;
(2) EG(R) is a star graph;
(3) EG(R) = Γ(R) and gr(Γ(R)) =∞;
(4) annR(Z(R)) is a prime ideal of R and either |Z(R)| = |annR(Z(R))| = 3

or |annR(Z(R))| = 2 and |Z(R)| =∞;
(5) EG(R) = K1,1 or EG(R) = K1,∞;
(6) Γ(R) = K1,1 or Γ(R) = K1,∞.

8. When is EG(R) planar?

Recall that a graph G is called a planar if it can be drawn in the plane so that
the edges of G do not cross.

Theorem 8.1. ([27, Theorem 3.2]) Let R be a ring such that either R is ring-
isomorphic to R1×R2×R3 (for some rings R1, R2, R3) or |Min(R)| ≥ 3 and R is
ring-isomorphic to R1 ×R2( for some rings R1, R2), then EG(R) is not a planar.

For a reduced ring R, we have the following result.

Theorem 8.2. ([27, Theorem 3.3]) Let R be a reduced ring. Then the following
statements hold:

(1) EG(R) is planar;
(2) |Min(R)| = 2 and one of the minimal prime ideals of R has at most three

distinct elements.

For a non-reduced ring R, we have the following result.

Theorem 8.3. ([27]) Let R be a non-reduced ring. Then

(1) ([27, Theorem 3.4]) Suppose that R is not ring-isomorphic to either Z4 or
Z2[X]
(X2) . Then

(a) Suppose that |Z(R)| < ∞. Then EG(R) is planar if and only if R is

ring-isomorphic to either Z2 × Z4 or Z2 × Z2[X]
(X2) .

(b) Suppose that |Z(R)| = ∞. Then EG(R) is planar if and only if
annR(R) is a prime ideal of R.

(2) ([27, Theorem 3.5]) Suppose that |Nil(R)| = 3. Then annR(Z(R)) is a
prime ideal of R if and only if EG(R) is planar.

(3) ([27, Theorem 3.6]) If |Nil(R)| ≥ 6, then EG(R) is not planar. If 4 ≤
|Nil(R)| ≤ 5, then EG(R) is planar if and only if Z(R) = Nil(R).
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