RECENT RESULTS ON THE ANNIHILATOR GRAPH OF A
COMMUTATIVE RING: A SURVEY

AYMAN BADAWI

ABSTRACT. Let R be a commutative ring with nonzero identity, Z(R) be its
set of zero-divisors, and if a € Z(R), then let anng(a) = {d € R | da = 0}.
The annihilator graph of R is the (undirected) graph AG(R) with vertices
Z(R)* = Z(R) \ {0}, and two distinct vertices  and y are adjacent if and
only if anng(zy) # anng(z) Uanng(y). It follows that each edge (path) of
the zero-divisor graph I'(R) is an edge (path) of AG(R). The extended zero-
divisor graph of R is the undirected (simple) graph EG(R) with the vertex
set Z(R)*, and two distinct vertices x and y are adjacent if and only if either
Rz Nanng(y) # {0} or Ry Nanng(z) # {0}. Hence it follows that the zero-
divisor graph I'(R) is a subgraph of EG(R). In this paper, we collect some
properties (many are recent) of the two graphs AG(R) and EG(R).

1. INTRODUCTION

Let R be a commutative ring with nonzero identity, and let Z(R) be its set of
zero-divisors. Over the past several years, there has been considerable attention in
the literature to associating graphs with commutative rings (and other algebraic
structures) and studying the interplay between ring-theoretic and graph-theoretic
properties; see the recent survey articles [10] and [47]. For example, as in [16], the
zero-divisor graph of R is the (simple) graph I'(R) with vertices Z(R) \ {0}, and
distinct vertices = and y are adjacent if and only if xy = 0. This concept is due to
Beck [29], who let all the elements of R be vertices and was mainly interested in
colorings. The zero-divisor graph of a ring R has been studied extensively by many
authors, for example see([1]-[3], [11], [20]-[21], [39]-[44], [48]-[54], [58]). We recall
from [12], the total graph of R, denoted by T'(I'(R)) is the (undirected) graph with all
elements of R as vertices, and for distinct x,y € R, the vertices x and y are adjacent
if and only if x+y € Z(R). The total graph (as in [12]) has been investigated in [8],
[7], [6], [5], [47], [49], [52], [36] and [56]; and several variants of the total graph have
been studied in [4], [13], [14], [15], [19], [28], [35], [32], [33], [34], [37], [38], and [45].
Let a € Z(R) and let anng(a) = {r € R | ra = 0}. In 2014, Badawi [23] introduced
the annihilator graph of R. We recall from [23] that the annihilator graph of R is
the (undirected) graph AG(R) with vertices Z(R)* = Z(R) \ {0}, and two distinct
vertices x and y are adjacent if and only if anng(zy) # anng(z) U anng(y). It
follows that each edge (path) of the classical zero-divisor of R is an edge (path) of
AG(R). For Further investigations of AG(R), see [24], [25], and [31]. The authors
in [26] and [27] introduced the extended zero-divisor graph of R. We recall from [26]
that the extended zero-divisor graph of R is the undirected (simple) graph EG(R)
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with the vertex set Z(R)*, and two distinct vertices x and y are adjacent if and
only if either Rx Nanng(y) # {0} or Ry Nanng(z) # {0}. Hence it follows that
the zero-divisor graph I'(R) is a subgraph of EG(R).

Let G be a (undirected) graph. We say that G is connected if there is a path
between any two distinct vertices. For vertices z and y of G, we define d(z,y) to
be the length of a shortest path from x to y (d(x,z) = 0 and d(z,y) = oo if there is
no path). Then the diameter of G is diam(G) = sup{ d(z,y) | « and y are vertices
of G}. The girth of G, denoted by gr(G), is the length of a shortest cycle in G
(97(G) = oo if G contains no cycles).

A graph G is complete if any two distinct vertices are adjacent. The complete
graph with n vertices will be denoted by K™ (we allow n to be an infinite cardinal).
A complete bipartite graph is a graph G which may be partitioned into two disjoint
nonempty vertex sets A and B such that two distinct vertices are adjacent if and
only if they are in distinct vertex sets. If one of the vertex sets is a singleton, then
we call G a star graph. We denote the complete bipartite graph by K™" where
|A| = m and |B| = n (again, we allow m and n to be infinite cardinals); so a star
graph is a K™ and K> denotes a star graph with infinitely many vertices. By G,
we mean the complement graph of G. Let G1, G5 be two graphs. The join of G; and
Go, denoted by G1VGa, is a graph with the vertex set V(G1UG2) = V(G1)UV(G2)
and edge set E(G1 U Gy) = E(G1) U E(G2) U{u—vju € G1,v € Ga}. Finally, let
K™ be the graph formed by joining G; = K™? (= AU B with |A| = m and
|B| = 3) to the star graph G5 = K1'™ by identifying the center of G and a point
of B.

Throughout, R will be a commutative ring with nonzero identity, Z(R) its set of
zero-divisors, Nil(R) its set of nilpotent elements, U(R) its group of units, T'(R) its
total quotient ring, and Min(R) its set of minimal prime ideals. For any A C R, let
A* = A\ {0}. We say that R is reduced if Nil(R) = {0} and that R is quasi-local if
R has a unique maximal ideal. A prime ideal P of R is called an associated prime
ideal, if anng(z) = P, for some non-zero element x € R. The set of all associated
prime ideals of R is denoted by Ass(R), and > = {anng(z)|0 # v € R}. The
distance between two distinct vertices a,b of I'(R) is denoted by dp(gy(a,b). If
AG(R) is identical to I'(R), then we write AG(R) = I'(R); otherwise, we write
AG(R) # T'(R). As usual, Z and Z,, will denote the integers and integers modulo
n, respectively.

2. BASIC PROPERTIES OF AG(R)

We recall the following basic results from [23].

Theorem 2.1. (23, Theorem 2.2]) Let R be a commutative ring with |Z(R)*| > 2.
Then AG(R) is connected and diam(AG(R)) < 2.

Theorem 2.2. (|23, Theorem 2.4]) Let R be a commutative ring. Suppose that x—y
is an edge of AG(R) that is not an edge of T'(R) for some distinct x,y € Z(R)*. If
xy? # 0 and 2%y # 0, then there is a w € Z(R)* such that x — w — y is a path in
AG(R) that is not a path in T'(R), and hence C : x —w —y —x is a cycle in AG(R)
of length three and each edge of C' is not an edge of I'(R).

In view of Theorem 2.2, we have the following result.

Corollary 2.3. (|23, Corollary 2.5])
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Let R be a reduced commutative ring. Suppose that © — y is an edge of AG(R)
that is not an edge of T'(R) for some distinct x,y € Z(R)*. Then there is a w €
anng(zy) \ {z,y} such that x —w —y is a path in AG(R) that is not a path in
I'(R), and hence C : x —w —y — x is a cycle in AG(R) of length three and each
edge of C is not an edge of T'(R).

In light of Corollary 2.3, the following result follows.

Theorem 2.4. ([23, Theorem 2.6]) Let R be a reduced commutative ring and sup-
pose that AG(R) # T'(R). Then gr(AG(R)) = 3. Furthermore, there is a cycle C
of length three in AG(R) such that each edge of C is not an edge of T(R).

In view of Theorem 2.2, the following is an example of a non-reduced commuta-
tive ring R where & — y is an edge of AG(R) that is not an edge of I'(R) for some
distinct z,y € Z(R)*, but every path in AG(R) of length two from z to y is also a
path in T'(R).

Example 2.5. Let R = Zs. Then 2 — 6 is an edge of AG(R) that is not an edge
of T'(R). Now 2 —4 — 6 is the only path in AG(R) of length two from 2 to 6 and
it is also a path in T'(R). Note that AG(R) = K3, T'(R) = K%2, gr(I'(R)) = oo,
gr(AG(R)) = 3, diam(I'(R)) = 2, and diam(AG(R)) = 1.

The following is an example of a non-reduced commutative ring R such that

G(R) # I'(R) and if z — y is an edge of AG(R) that is not an edge of I'(R) for
some distinct z,y € Z(R)*, then there is no path in AG(R) of length two from x
to y.

Example 2.6. (1) Let R =7ZoXxZy and leta = (0,1),b = (1,2), and c = (0, 3).
Then a — b and ¢ — b are the only two edges of AG(R) that are not edges
of T(R), but there is no path in AG(R) of length two from a to b and there
is no path in AG(R) of length two from c to b. Note that AG(R) = K23,
I'(R) = ?1,3, gr(AG(R)) = 4, gr(T(R)) = oo, diam(AG(R) = 2, and
diam(T'(R)) = 3.

(2) Let R = Zy xZo[X]/(X?). Letx = X +(X?) € Z2[X]/(X?), a = (0,1),b=
(1,z), and ¢ = (0,1 4+ x). Then a —b and c — b are the only two edges
of AG(R) that are not edges of T'(R), but there is no path in AG(R) of
length two from a to b and there is no path in AG(R) of length two from
c to b. Again, note that AG(R) = K*3, T'(R) = Fl’j, gr(AG(R)) = 4,
gr(T(R)) = oo, diam(AG(R) = 2, and diam(T'(R)) = 3.

If AG(R) # T'(R) and gr(AG(R)) = 4, then the following result characterize, up
to isomorphism, all such rings.

Theorem 2.7. ([23, Theorem 2.9]) Let R be a commutative ring and suppose that
G(R) #T(R). Then the following statements are equivalent:

(1) gr(AG(R)) = 4;

(2) gr(AG(R)) #3;

(3) If x — y is an edge of AG(R) that is not an edge of T'(R) for some distinct
x,y € Z(R)*, then there is no path in AG(R) of length two from x to y;

(4) There are some distinct x,y € Z(R)* such that x —y is an edge of AG(R)
that is not an edge of T'(R) and there is no path in AG(R) of length two
from x to y;
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(5) R is ring-isomorphic to either Zo x Zg or Za x Zo[X]/(X?).
In view of Theorem 2.7, the following result follows

Corollary 2.8. ([23, Corollary 2.10]) Let R be a commutative ring such that
AG(R) #T'(R) and assume that R is not ring-isomorphic to Zo X B, where B = Z4
or B = 75| X]/(X?). If E is an edge of AG(R) that is not an edge of T'(R), then
E is an edge of a cycle of length three in AG(R).

A direct implication of Theorem 2.7 and Corollary 2.8 is the following result.

Corollary 2.9. (23, Corollary 2.11]) Let R be a commutative ring such that
AG(R) #T'(R). Then gr(AG(R)) € {3,4}.

Theorem 2.10. ([24, Theorem 2.5]) Let R be a non-reduced ring such that R is

not ring-isomorphic to Zs x B, where B = Z, or B = %([5(;] Then the following

statements are equivalent:
(1) gr(AG(R)) = oo;

) AG(R) is a star graph;

) AG(R) is a bipartite graph;

) AG(R) is a complete bipartite graph;

) S = Ass(R) = {anng(x),anng(y)} for some x,y € Z(R)*. Furthermore,
if anng(z) = anng(y), then |anng(x)| = |Z(R)| = 3 and if anng(z) #
annr(y), then Y." = {Z(R),annr(Z(R))} and |anng(Z(R))*| = 1.

Theorem 2.11. ([24, Corollary 2.3]) Let R be a ring. Then AG(R) is a complete

bipartite graph if and only if one of the following statements holds:

(1) Nil(R) = {0} and |Min(R)| = 2;
(2) Nil(R) # {0} and either AG(R) = K1 or AG(R) = K*3, where 1 <n <

Q.

Let x be a vertex of AG(R). In the following result, the authors in[24] gave
conditions under which z is adjacent to every vertex in I'(R).

Theorem 2.12. ([24, Theorem 2.6]) Let R be a ring and x be a vertex of AG(R).
Then the following statements are equivalent:

(1) x is adjacent to every other vertex of T'(R);
(2) anng(z) is a mazimal element of > and x is adjacent to every other vertex
of AG(R).

Recall that a undirected simple graph G = (V, E) is called an n-partite graph if
V=A4UAyU---UA, for some n > 2, where each A; # ¢, A;NA; = ¢, i # 7,
1<i4,5<mn,and z,y € A; implies x — y is not an edge of G.

The authors in [25] prove the following result.

Theorem 2.13. (25, Theorem 2.1]) Let R = Dy X --- X D,,, where n > 2 and D;
is an integral domain for every 1 < i < n. Then the following statements hold:
(1) AG(R) is annC[ % |-partite graph (Recall that mCn (m choose n) = Wlln),
(2) AG(R) is not an nC[%] — 1-partite graph.

3. WHEN DOES AG(R) =T(R)?

It is natural to ask when does AG(R) = I'(R)? For a reduced ring R that is not
an integral domain, we have the following results.
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3.1. Case I: R is reduced.

Theorem 3.1. ([23, Theorem 3.3]) Let R be a reduced commutative ring that is
not an integral domain. Then the following statements are equivalent:

(1) AG(R) is complete;

(2) T'(R) is complete (and hence AG(R) =T(R));

(3) R is ring-isomorphic to Zg X Zs.

Theorem 3.2. (23, Theorem 3.4]) Let R be a reduced commutative ring that is not
an integral domain and assume that Z(R) is an ideal of R. Then AG(R) # T'(R)
and gr(AG(R)) = 3.

Theorem 3.3. ([23, Theorem 3.5]) Let R be a reduced commutative ring with
|Min(R)| > 3 (possibly Min(R) is infinite). Then AG(R) # I'(R) and gr(AG(R)) =
3.

Theorem 3.4. (23, Theorem 3.6]) Let R be a reduced commutative ring that is
not an integral domain. Then AG(R) =T'(R) if and only if |Min(R)| = 2.

Theorem 3.5. ([23, Theorem 3.7]) Let R be a reduced commutative ring. Then
the following statements are equivalent:

(1) gr(AG(R)) = 4;

(2) AG(R) =T(R) and gr(I'(R)) = 4;

(3) gr(T(R)) = 4;

(4) T(R) is ring-isomorphic to K1 x K, where each K; is a field with |K;| > 3;

(5) IMin(R)| = 2 and each minimal prime ideal of R has at least three distinct
elements;

(6) T(R) = K™" with m,n > 2;

(7) AG(R) = K™™ with m,n > 2.

Theorem 3.6. (23, Theorem 3.8]) Let R be a reduced commutative ring that is
not an integral domain. Then the following statements are equivalent:

(1) gr(AG(R)) = oo;

(2) AG(R) =T(R) and gr(AG(R)) = oo;

(3) gr(T(R)) = o0;

(4) T(R) is ring-isomorphic to Zy x K, where K is a field;

(5) |[Min(R)| = 2 and at least one minimal prime ideal ideal of R has exactly
two distinct elements;

(6) T(R) = K'™ for somen > 1;

(7) AG(R) = K*™ for some n > 1.

In view of Theorem 3.5 and Theorem 3.6, we have the following result.

Corollary 3.7. (123, Corollary 3.9]) Let R be a reduced commutative ring. Then
AG(R) =T(R) if and only if gr(AG(R)) = gr(I'(R)) € {4, }.

If R is non-reduced, then we have the following results.

3.2. Case II: R is non-reduced.

Theorem 3.8. ([24, Theorem 2.2]) Let R be a ring such that for each edge of
AG(R), say x—vy, either anng(z) € Ass(R) oranng(y) € Ass(R). Then AG(R) =
T(R). In particular, if >." = Ass(R), then T'(R) = AG(R).
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Theorem 3.9. ([24, Theorem 2.3]) Let R be a non-reduced ring. Then the following
statements are equivalent:
(1) T(R) = AG(R) = K"VK™, wheren = |Nil(R)*| and m = |Z(R)\Nil(R)|.
(2) anng(Z(R)) is a prime ideal of R.
(3) 3" = Ass(R) and | >"| < 2.

Theorem 3.10. (]23, Theorem 3.15]) Let R be a non-reduced commutative ring
such that Z(R) is not an ideal of R. Then AG(R) # I'(R).

Theorem 3.11. ([23, Theorem 3.16]) Let R be a non-reduced commutative ring.
Then the following statements are equivalent:

(1) gr(AG(R)) = 4;

(2) AG(R) #T'(R) and gr(AG(R)) = 4;

(3) R is ring-isomorphic to either Za X Zy or Lo X Zo[X]/(X?);

1,3
(4)T(R) =K ;
(5) AG(R) = K?3.

We observe that gr(T'(Zg)) = oo, but gr(AG(Zsg)) = 3. We have the following

result.

Theorem 3.12. ([23, Theorem 3.17]) Let R be a commutative ring such that
AG(R) #T'(R). Then the following statements are equivalent:

(1) T(R) is a star graph;

(2) T(R) = K2,

(3) AG(R) = K3.

Theorem 3.13. (]23, Theorem 3.18]) Let R be a non-reduced commutative ring
with |Z(R)*| > 2. Then the following statements are equivalent:

(1) AG(R) is a star graph;

(2) gr(AG(R)) = oo;

(3) AG(R) =T(R) and gr(T'(R)) = oo;

(4) Nil(R) is a prime ideal of R and either Z(R) = Nil(R) = {0,—w,w}
(w # —w) for some nonzero w € R or Z(R) # Nil(R) and Nil(R) = {0,w} for
some nonzero w € R (and hence wZ(R) = {0});

(5) Either AG(R) = K%' or AG(R) = K1*>°;

(6) Either T'(R) = K'1 or T'(R) = K1*°.

Corollary 3.14. ([23, Corollary 3.19]) Let R be a non-reduced commutative ring
with |Z(R)*| > 2. Then T'(R) is a star graph if and only if T(R) = K, T(R) =
K12 orT(R) = Kb,

Remark 3.15. In view of Theorem 2.10, the authors in [24] gave an alternative
proof of Theorem 3.13 (see [24, Corollary 2.4] ).

In the following example, we construct two non-reduced commutative rings say
Ry and Ry, where AG(R;) = K11 and AG(Rp) = K1,

Example 3.16. (1) Let Ry = Z3[X]/(X?) and let x = X + (X?) € Ry. Then
Z(Ry) = Nil(Ry) = {0, —x,2} and AG(R;) = I'(R;) = K%', Also note
that AG(ZQ) = F(Zg) = Kl’l.

(2) Let Ry = Zo|X,Y]/(XY,X?%). Then let x = X + (XY + X?) and y =
Y + (XY + X?) € Ry. Then Z(R3) = (x,y)Ra, Nil(Ry) = {0,2}, and
Z(Ry) # Nil(Rg). It is clear that AG(R2) =T'(Ry) = Kb,
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Remark 3.17. Let R be a non-reduced commutative ring. In view of Theorem
3.10, Theorem 3.11, and Theorem 3.13, if AG(R) = T'(R), then Z(R) is an ideal
of R and gr(AG(R)) = gr('(R)) € {3,00}. The converse is true if gr(AG(R) =
gr(T(R)) = oo (see Theorem 3.10 and 8.138). However, if Z(R) is an ideal of R
and gr(AG(R)) = gr(T'(R)) = 3, then it is possible to have all the following cases:

(1) It s possible to have a commutative ring R such that Z(R) is an ideal of R,
Z(R) # Nil(R), AG(R) =T(R), and gr(AG(R)) = 3. See Example 3.18.

(2) It is possible to have a commutative ring R such that Z(R) is an ideal of
R, Z(R) # Nil(R), Nil(R)?> = {0}, AG(R) # I'(R), diam(AG(R)) =
diam(T'(R)) = 2, and gr(AG(R)) = gr(I'(R)) = 3. See Example 3.19.

(3) It is possible to have a commutative ring R such that Z(R) is an ideal
of R, Z(R) # Nil(R), Nil(R)> = {0}, AG(R) is a complete graph (i.e.,
diam(AG(R)) = 1), AG(R) # T'(R), diam(T'(R)) = 2, and gr(AG(R)) =
gr(T(R)) = 3. See Theorem 3.20.

Example 3.18. Let D = Zo[X,Y, W], I = (X2, Y2, XY, XW)D is an ideal of D,
and let R=D/I. Thenletx = X+I1I,y=Y +1, and w =W +1 be elements of R.
Then Nil(R) = (z,y)R and Z(R) = (z,y,w)R is an ideal of R. By construction,
we have Nil(R)?> = {0}, AG(R) = T'(R), diam(AG(R)) = diam(I'(R)) = 2, and
gr(AG(R)) = gr(T(R)) = 3 (for example, x — (x + y) —y — x is a cycle of length
three).

Example 3.19. Let D = Zy[X,Y, W], I = (X2, Y2, XY, XW,YW?3)D is an ideal
of D, and let R = D/I. Thenlet x = X +1I,y =Y + 1, and w = W + I be
elements of R. Then Nil(R) = (x,y)R and Z(R) = (z,y,w)R is an ideal of R.
By construction, Nil(R)? = {0}, diam(AG(R)) = diam(T'(R)) = 2, gr(AG(R)) =
gr(C(R)) = 3. Howewver, since w® #0 and y € anng(w3)\ (anng(w)Uanng(w?)),
we have w — w? is an edge of AG(R) that is not an edge of T'(R), and hence
AG(R) # I'(R).

Given a commutative ring R and an R-module M, the idealization of M is the
ring R(+)M = R x M with addition defined by (r,m)+ (s,n) = (r+s,m+n) and
multiplication defined by (r,m)(s,n) = (rs,rn—+sm) for all ;s € R and m,n € M.
Note that {0}(+)M C Nil(R(+)M) since ({0}(+)M)? = {(0,0)}. We have the
following result

Theorem 3.20. (23, Theorem 3.24]) Let D be a principal ideal domain that is
not a field with quotient field K (for example, let D = Z or D = F[X] for some
field F) and let Q = (p) be a nonzero prime ideal of D for some prime (irreducible)
element p € D. Set M = K/Dg and R = D(+)M. Then Z(R) # Nil(R), AG(R)
is a complete graph, AG(R) # I'(R), and gr(AG(R)) = gr(I'(R)) = 3.

The following example shows that the hypothesis “@Q is principal” in the above
Theorem is crucial.

Example 3.21. Let D = Z[X] with quotient field K and Q = (2,X)D. Then
Q is a nonprincipal prime ideal of D. Set M = K/D¢g and R = D(+)M. Then
Z(R) = Q(+)M, Nil(R) = {0}(+)M, and Nil(R)* = {(0,0)}. Let a = (2,0) and
b=(0,% + Dgq). Then ab= (0,% + Dg) € Nil(R)*. Since anng(ab) = anng(b),
we have a — b is not an edge of AG(R). Thus AG(R) is not a complete graph.

We terminate this section with the following open question.
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(Open question, [24]): Let R be a non-reduced ring and z — y be an edge of
AG(R). f T(R) = AG(R), then is it true either anng(x) € Ass(R) or anng(y) €
Ass(R)?

4. CLIQUE NUMBER AND CHROMATIC NUMBER OF AG(R)

Let G = (V,E) be a graph. The clique number of G, denoted by w(G), is the
largest positive integer n such that K, is a subgraph of G. The chromatic number
of G, denoted by x(G), is the the minimal number of colors which can be assigned
to the vertices of G in such a way that every two adjacent vertices have different
colors. It should be clear that w(G) < x(G). Again, recall that mCn (m choose n)

m!
nl(m—n)!"

Theorem 4.1. (25, Theorem 2.2]) Assume that R is ring-isomorphic to Dy X

-+ X Dy, where n > 2 and D; is an integral domain for every 1 < i < n. Then

w(AG(R)) = x(AG(R)) = nC[%]. In particular, if R is an Artinian ring, then
Maz(R

w(AG(R)) = X(AG(R)) = |Maz(R)|C[e5L].

Theorem 4.2. (125, Theorem 2.3]) Let R be a non-reduced ring. Then the following
statements hold.

(1) If |Z(R)| < oo, then the following statements are equivalent:

(a) w(AG(R)) = [Nil(R)|

(b) X(AG(R)) = |Nil(R)|

() AG(R) = K?3.
(2) If |Z(R)| = oo, w(AG(R)) < oo and Z(R) is an ideal of R, then the

following statements are equivalent:

(a) W(AG(R)) = |Nil(R).

(b) X(AG(R)) = |Nil(R)|.

(d) = —y is not an edge of AG(R), for every x,y € Z(R) \ Nil(R).

It is well-known that if G is a bipartite graph, then x(AG(R)) = 2. In the
following result, the authors in [25] classified all bipartite annihilator graphs of
rings.

Theorem 4.3. ([25, Theorem 2.4]) Let R be a non-reduced ring. Then the following
statements are equivalent:

(1) w(AG(R)) =2;

(2) x(AG(R)) = 2; o

(3) AG(R) = K2,3 or AG(R) = K5 or AG(R) =K VK.

5. GENUS OF AG(R)

The genus of a graph G, denoted by g(G), is the minimal integer n such that the
graph can be embedded in S,,. Intuitively, G is embedded in a surface if it can be
drawn in the surface so that its edges intersect only at their common vertices. A
graph G with genus 0 is called a planar graph and a graph G with genus 1 is called
as a toroidal graph. Note that if H is a subgraph of a graph G, then g(H) < g(G).
In the following result, the authors in [31] classified all quasi-local rings (up to
isomorphism) that have planar annihilator graphs.
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Theorem 5.1. ([31, Theorem 15]) Let R be a quasi-local ring. Then AG(R)

is a planar if and only if R is ring-isomorphic to one of the following rings:
Za, a7 o 57 2y R0)» TR AT 3y TRV T ey (e (where Py denotes

a field with 4 elements), %,Z&g, or %

For a reduced finite ring, we have the following result.

Theorem 5.2. ([31, Theorem 16]) Let R be a reduced finite ring that is not a
field, i.e., R = Fy X --- X F,, where each F; is a finite field and n > 2. Then
AG(R) is planar if and only if R is ring-isomorphic to one of the following rings:
Zo X F,Z3 X F,Zs X Zy X Zo,Zs X Zy X Z3, where F is a finite field.

If R is a non-reduced finite ring, then we have the following.

Theorem 5.3. ([31, Theorem 17]) Assume that R is ring-isomorphic to Ry X - - - X
R, X F} X --- X F,,, where each R; is a finite quasi-local ring that is not a field,

each F; is a finite field, and n,m > 1. Then AG(R) is planar if and only if R is

ring-isomorphic to one of the following rings: Zy X Zs, % X Zs.

The following result classifies (up to isomorphism) all quasi-local rings that have

genus one annihilator graphs.

Theorem 5.4. ([31, Theorem 18]) Let R be a quasi-local ring. Then g(AG(R)) =1
if and only if R is ring-isomorphic to one of the following rings:

g Za[X] _Za[X] Z5[X] Z41X] Zs[X] Z5[X,Y] Zs[X]
16> TX7) » (X%,X2—2)7 (X3—2,X%)7 (X3+X2—2,X%)7 (X3,X2-2X)’ (X3,XY,Y2—X?)’ (X2—4,2x)’
Z4[X,Y] Z4[X] Z4]X y] Z3[X.Y]  Z5[X.Y] Z4]X] Z4]X,Y] Zg[X] Fs[X]

(X3,XY,X2-2,Y2-2,Y3)’ (X2) » (X2,Y2,XY—2))’ (X2,Y2)) (X2,Y2,XY)’ (X3,2x)’ (X3,X2-2,XY,Y?)’ (X2)’ (X2)’
Z4[X] Z4[X,Y] 2 XY, Z] & o
(X3+X+1)’ 2X,2Y,X2,Y2,XY)’ (X,Y,Z)2 » <49, (X2)

The following result classifies (up to isomorphism) all finite reduced rings that
have genus one annihilator graphs.

Theorem 5.5. ([31, Theorem 19]) Let R be a reduced finite ring that is not a field,
i.e.,R is ring-isomorphic to Fy x - -- X F,, where each F; is a finite field and n > 2.
Then g(AG(R)) = 1 if and only if R is ring-isomorphic to one of the following
rings: Fy x F4,F4 X Z5,Z5 X Z5, or Fy x 7.

If R is a non-reduced finite ring, then we have the following.

Theorem 5.6. ([31, Theorem 20])Assume that R is ring-isomorphic to Ry X - -+ X
R, x F1 x -+ x Fy,,, where each R; is a finite quasi-local ring that is not a field,
each F; is a finite field, and n,m > 1. Then g(AG(R)) = 1 if and only if R is

ring-isomorphic to one of the following rings: Zy X Zs, or Z&[f)] X Z3.

6. EXTENDED ZERO-DIVISOR GRAPH OF R: EG(R)

Recall ([26]) that the extended zero-divisor graph of R is the undirected (simple)
graph FG(R) with the vertex set Z(R)*, and two distinct vertices x and y are
adjacent if and only if either Rz Nanng(y) # {0} or Ry Nanng(x) # {0}. Hence
it follows that the zero-divisor graph I'(R) is a subgraph of EG(R).

In the following result, we collect some basic properties of EG(R).

Theorem 6.1. ([26]) Let R be a ring. Then
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(1) ([26, Theorem 2.1]) EG(R) is connected and diam(EG(R)) < 2. Moreover,
if E(G) has a cycle, then gr(EG(R)) < 4.

(2) (|26, Theorem 2.2]) If EG(R) has a cycle, then gr(E(G)) = 4 if and only
if R is reduced with |Min(R)| = 2.

(3) ([26, Theorem 3.2]) EG(R) is a star graph if and only if one of the following
statements holds:
(a) R is ring-isomorphic to Zs x D, where D is an integral domain.
(b) Z(R)| = 3.
(¢) Nil(R) is a prime ideal of R and |Nil(R)| = 2.

(4) (26, Theorem 3.3]) Suppose that R is a non-reduced ring such that EG(R)
s a star graph. Then the following statements hold:
(a) R is indecomposable.
(b) Fither |Z(R)| =3 or |Z(R)| =

(5) Assume that R is ring-isomorphic to Dy X -+ X D,,, where n > 2 and each
D; is an integral domain. Then EG(R) is a complete (2" —2)-partite graph.

Let R be a ring and z,y € R. The authors in [26] called an element z an
Ry-regular element if x ¢ Z(Ry) and RzRy # Ry.

Theorem 6.2. ([26, Theorem 3.5]) Let R be a non-reduced ring. Then EG(R) is
complete if and only if R is indecomposable and either x is not Ry-reqular or y is
not Rx-regular, for every distinct x,y € Z(R)*.

7. WHEN DOES EG(R) =T(R)?

Since I'(R) is always an induced subgraph of EG(R), it is natural to ask when
does EG(R) =T'(R)? First, we consider the case when R is reduced.

7.1. Case I: R is reduced.

Theorem 7.1. ([26]) Let R be a reduced ring that is not an integral domain.

(1) (26, Theorem 4.1, Corollary 4.3]) Assume |[Min(R)| = n. The following
statements are equivalent:
(a) n=2;
(b) T'(R) = EG(R);
(c) gr(EG(R)) = gr(I(R)) € {4,00}.
(2) ([26, Corollary 4. 1]) The following statements are equivalent:
(a) QT(EG)
(b) EG(R) = F( ) and gr(EG(R)) = 00;
(©) gr(T(R)) = oo;
(d) \Mm( )| = 2 and at least one minimal prime ideal of R has exactly
two distinct elements;
(e) ( ) = Ki , for somen > 1.
(f) EG(R) = Ky, for somen > 1.
(3) (126, Corollary 4.2]) The following statements are equivalent:
(a
(b
c
d

(
(d) |[Min(R)| = 2 and each minimal prime ideal of R has at least three
distinct elements;

(e) EG(R) = Ky, for some m,n > 2;

) gr(EG( ) = 4;
) EG(R) = T'(R) and gr(U'(R)) = 4;
; gr(EG(R)) = 4;
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(f) T'(R) = Ky, for some m,n > 2.
Now we consider the case when R is non-reduced.
7.2. Case II: R is non-reduced.

Theorem 7.2. ([26, Theorem 4.3]) Let R be a non-reduced ring. Then the following
statements are equivalent:

(1) gr(EG(R)) = oo;

(2) EG(R) is a star graph;

(3) EG(R) =T(R) and gr(I'(R)) = oo;

(4) anngr(Z(R)) is a prime ideal of R and either |Z(R)| = |annr(Z(R))| = 3

or lanng(Z(R))| = 2 and |Z(R)| = oco;

(5) EG(R) = Kl,l or EG(R) = Kl,oo;

(6) T'(R) = K11 orT'(R) = K1 0.

8. WHEN IS EG(R) PLANAR?

Recall that a graph G is called a planar if it can be drawn in the plane so that
the edges of G do not cross.

Theorem 8.1. ([27, Theorem 3.2]) Let R be a ring such that either R is ring-
isomorphic to Ry X Ry X Rz (for some rings Ry, Ro, R3) or |Min(R)| > 3 and R is
ring-isomorphic to Ry X Ro( for some rings Ry, Ra), then EG(R) is not a planar.

For a reduced ring R, we have the following result.

Theorem 8.2. ([27, Theorem 3.3]) Let R be a reduced ring. Then the following
statements hold:
(1) EG(R) is planar;
(2) [Min(R)| = 2 and one of the minimal prime ideals of R has at most three
distinct elements.

For a non-reduced ring R, we have the following result.

Theorem 8.3. ([27]) Let R be a non-reduced ring. Then

(1) (127, Theorem 3.4]) Suppose that R is not ring-isomorphic to either Zy or

221X Then
(x2) -
(a) Suppose that |Z(R)| < co. Then EG(R) is planar if and only if R is

ring-isomorphic to either Zy X Z4 or Zy X %([g()}

(b) Suppose that |Z(R)| = oo. Then EG(R) is planar if and only if
anng(R) is a prime ideal of R.
(2) (|27, Theorem 3.5]) Suppose that |Nil(R)| = 3. Then anng(Z(R)) is a
prime ideal of R if and only if EG(R) is planar.
(3) (127, Theorem 3.6]) If |Nil(R)| > 6, then EG(R) is not planar. If 4 <
|Nil(R)| <5, then EG(R) is planar if and only if Z(R) = Nil(R).
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